
Journal of Computational Physics 228 (2009) 5592–5619
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
A singularity-avoiding moving least squares scheme for two-dimensional
unstructured meshes

Samuel K.M. Chenoweth a,*, Julio Soria b, Andrew Ooi a

a Department of Mechanical Engineering, University of Melbourne, Victoria 3010, Australia
b Laboratory for Turbulence Research in Aerospace and Combustion, Department of Mechanical Engineering, Monash University, Victoria 3800, Australia

a r t i c l e i n f o
Article history:
Received 4 August 2008
Received in revised form 23 April 2009
Accepted 23 April 2009
Available online 7 May 2009

PACS:
02.60.Ed
02.60.Lj
47.10.ad
92.60.hk

Keywords:
Moving least squares
Interpolation
Singularities
Convection
Diffusion
Navier–Stokes
0021-9991/$ - see front matter � 2009 Elsevier Inc
doi:10.1016/j.jcp.2009.04.036

* Corresponding author. Tel.: +61 3 8344 8102.
E-mail address: s.chenoweth@pgrad.unimelb.edu
a b s t r a c t

Moving least squares interpolation schemes are in widespread use as a tool for numerical
analysis on scattered data. In particular, they are often employed when solving partial differ-
ential equations on unstructured meshes, which are typically needed when the geometry
defining the domain is complex. It is known that such schemes can be singular if the data
points in the stencil happen to be in certain special geometric arrangements, however little
research has specifically addressed this issue. In this paper, a moving least squares scheme
is presented which is an appropriate tool for use when solving partial differential equations
in two dimensions, and the precise conditions under which singularities occur are identified.
The theory is used to develop a stencil building algorithm which automatically detects singu-
lar stencils and corrects them in an efficient manner, while attempting to maintain stencil
symmetry as closely as possible. Finally, the scheme is applied in a convection–diffusion
equation solver and an incompressible Navier–Stokes solver, and the results are shown to
compare favourably with known analytical solutions and previously published results.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

When conducting numerical simulations that operate on data defined on an unstructured mesh, it is necessary to employ
interpolation techniques in order to evaluate the quantities at arbitrary points in the domain. Calculation of the spatial deriv-
atives of a quantity, even at a point where the value of that quantity has been specified, also require the use of such methods.
A variety of techniques for interpolation of a scalar function based on values at scattered points have been described in the
literature, such as the Shepard method [17], moving least squares [12], radial basis functions [8] and an unstructured version
of bilinear interpolation [11]. In addition, some of these methods have been extended to allow direct calculation of spatial
derivatives using radial basis functions [19], moving least squares [10] and unstructured bilinear interpolation [11].

The moving least squares scheme allows a function and its spatial derivatives to be approximated at a point (here termed
the interpolation point) based on scattered values of the function (or its spatial derivative in some direction) at a number of
other points (here termed the data points). At each location in the domain where an interpolation is required (e.g. at each
edge midpoint), a stencil of local data points is selected and it is this set of data points which is used to approximate the
value at the interpolation point. The justification for basing the approximation only on local data points, as opposed to
. All rights reserved.
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the complete set of data points in the domain, is that the value of the function is likely to be more strongly influenced by
close data points than ones further away.

The moving least squares method comes in two main varieties, interpolating moving least squares and standard (or
approximating) moving least squares. For standard moving least squares, a surface formed from some basis function is fitted
to the data points so that the sum of the squares of the errors at each data point is minimised (see Section 2). (A weighting
function is also frequently used so that errors are considered to be less significant if they occur on data points located further
from the interpolation point.) It is understood and accepted that the surface obtained will not reproduce the values at the
data points exactly, although the errors are likely to be minimal if the data is smooth. Interpolating moving least squares,
on the other hand, attempts to form a surface using a weighting function which is inherently singular at the data points.
The values at the data points are then reproduced exactly, but smoothness can be an issue [13]. Thus the standard moving
least squares scheme is properly called an approximation rather than interpolation scheme. The interpolating moving least
squares scheme, on the other hand, is truly interpolating. This paper focusses on the standard moving least squares scheme
(henceforward referred to as simply moving least squares), as its smoothness properties make it generally useful for solving
partial differential equations not possessing discontinuities (such as shocks) in their solutions. Since the values at the data
points are reproduced with a high degree of accuracy when using standard moving least squares to approximate smooth
data, the term ‘interpolation’ will be used henceforward when referring to this operation.

The (standard) moving least squares scheme has been widely used for both pure interpolation/ approximation problems
(e.g. in image processing applications [13]) and in solving partial differential equations [3]. It has been widely reported in the
literature that the moving least squares scheme can suffer from singularities, where, in certain situations, the matrix requir-
ing inversion in the solution procedure is not invertible. Desimone et al. [3], for instance, identify the singularity problem and
note that it tends to occur when the number of data points supporting each weight function is ‘‘not sufficiently greater than”
the number of linearly independent functions making up their basis function (which is the theoretical minimum required).
However, the meaning of ‘‘sufficiently” is not made precise, and their solution for avoiding the problem is acknowledged to
be computationally expensive, and numerically poor if the number of data points included is not ‘‘considerably” greater than
the theoretical minimum. A useful clue to the cause of singularities is provided by the work of Bodin et al. [2], who note that
singularities occur when the data points are arranged in a ‘‘degenerate pattern”, citing an arrangement along a straight line
as an example. However, no further discussion is provided of the general conditions under which singularities occur. The
singularity problem for moving least squares has also been noted by Netuzhylov [14] and Prax et al. [15], and for a similar
problem by Schoenauer and Adolph [16], who also observed the occurrence of singularities when the data points lie along
straight lines. However, to the best knowledge of the author, a general theory for predicting the occurrence of singularities in
moving least squares has never been published. This problem is addressed in this paper.

Moreover, the lack of a precise understanding of the cause of singularities has meant that the strategies proposed to over-
come them are often vague and uncertain, such as adding extra data points to the stencil (without any rigourous theory pre-
dicting which data points will be the best to add or how many new data points may be required) or, in the case of meshless
methods, randomly moving each data point a small distance [15]. Using the methodology presented in this paper, it is pos-
sible to devise more reliable algorithms for detecting singular stencils and correcting them efficiently.
2. Overview of moving least squares

The interpolation scheme presented in this section is suitable for use in finite volume solvers of two-dimensional partial
differential equations on unstructured meshes. (The extension of these methods to three dimensions is straightforward, but
is not considered here.) This scheme is intended to allow the calculation of a function f and its spatial derivatives based upon
the values and/or directional derivatives of that function at various scattered points in the local region. This much flexibility
is necessary for handling the kinds of boundary conditions that are typically required when solving partial differential equa-
tions. For instance, when solving the heat equation, the boundary conditions may be specified in terms of the temperature
(for a boundary with controlled temperature), the spatial derivative of the temperature in a direction normal to the boundary
(for a boundary with controlled heat flux) or a linear combination of the two (for a boundary exposed to forced convection).
In order to allow for such general boundary conditions, the following linear relationship is specified for each data point j:
ajf ðxj; yjÞ þ Ljnx;j
@f
@x

����
ðxj ;yjÞ

þ Ljny;j
@f
@y

����
ðxj ;yjÞ

¼ Cj; ð1Þ
where x and y are the dimensional spatial coordinates, aj is a dimensionless constant that is equal to 1 if the value of the
function is involved in the specification or 0 otherwise, Lj is a length scale constant, nx;j and ny;j are the dimensionless com-
ponents of the unit vector in which the directional derivative is to be specified and Cj is a prescribed (possibly time varying)
value. The factor Lj is necessary to ensure that all the terms in this expression have the same units.

In order to avoid numerical issues, such as disparities in magnitude between terms of different order in the basis function,
it is desirable for the interpolations to be carried out in non-dimensional space. To this end, it is necessary to define the local
scale of the mesh at each edge i and use this local scale for non-dimensionalising and re-dimensionalising all length based
quantities involved in interpolations at this edge. A convenient definition for the local mesh scale Di near edge i is
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Di ¼

ffiffiffiffiffiffiffi
Ai;1

p
when edge i is on a boundary;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ai;1
p ffiffiffiffiffiffiffi

Ai;2
pq

otherwise;

8<: ð2Þ
where Ai;1 and Ai;2 are the areas of the element(s) adjacent to edge i. Because this length parameter is based on area, the same
length scale will apply to both the long and short sides of an element. The spatial coordinates used for doing the interpolation
at the midpoint of edge i are non-dimensionalised using an origin ðxc; ycÞ, also located at the midpoint of edge i, giving
x̂ ¼ x� xc

Di
ð3Þ
and
ŷ ¼ y� yc

Di
: ð4Þ
The spatial derivatives of f can be expressed in terms of non-dimensional spatial coordinates as
@f
@x̂
¼ Di

@f
@x

ð5Þ
and
@f
@ŷ
¼ Di

@f
@y
: ð6Þ
The length parameter used in (1) can be non-dimensionalised thus, for each data point j which is used in the stencil for inter-
polating on edge i
bLj ¼

Lj

Di
: ð7Þ
The data point specification (1) can then be expressed in terms of non-dimensional spatial variables as
ajf ðxj; yjÞ þ bLjnx;j
@f
@x̂

����
ðxj ;yjÞ

þ bLjny;j
@f
@ŷ

����
ðxj ;yjÞ

¼ Cj: ð8Þ
The moving least squares scheme requires that a basis function be chosen, which will be fitted to the data points of each
stencil. One of the more common choices for a basis function is an nth order polynomial, which can be expressed in non-
dimensional vector form as
f �ðx̂; ŷÞ ¼ bðx̂; ŷÞp; ð9Þ
where p ¼ p1; p2; . . . ; p1
2ðnþ1Þðnþ2Þ�1; p1

2ðnþ1Þðnþ2Þ

� �T
, the column vector of basis polynomial coefficients (T indicates the trans-

pose), and bðx̂; ŷÞ ¼ 1; x̂; ŷ; x̂2; x̂ŷ; ŷ2; . . . ; x̂n; x̂n�1ŷ; . . . ; x̂ŷn�1; ŷn
� �

, the row vector of basis polynomial terms.
The partial derivatives of the polynomial basis function can be expressed in vector form as
f �x̂ ðx̂; ŷÞ ¼ bx̂ðx̂; ŷÞp; ð10Þ
f �ŷ ðx̂; ŷÞ ¼ bŷðx̂; ŷÞp; ð11Þ
where bx̂ðx̂; ŷÞ ¼ 0;1;0;2x̂; ŷ;0; � � � nx̂n�1; ðn� 1Þx̂n�2ŷ; . . . ;2x̂ŷn�2; ŷn�1;0
� �

and bŷðx̂; ŷÞ ¼ 0;0;1; 0; x̂;2ŷ; . . . ;0; x̂n�1;2x̂n�2
�

ŷ;
. . . ; ðn� 1Þx̂ŷn�2;nŷn�1Þ.

The constraint which is specified for each data point j is given by (8). In order to fit an appropriate basis polynomial, there-
fore, it is necessary to compare the values of Cj with values predicted by the basis polynomial, C�j . To this end an expression
for C�j in terms of the basis polynomial must be obtained, which is
C�j ¼ ajf �ðx̂j; ŷjÞ þ bLjnx;jf �x̂ ðx̂j; ŷjÞ þ bLjny;jf �ŷ ðx̂j; ŷjÞ ¼ ðajbðx̂j; ŷjÞ þ bLjnx;jbx̂ðx̂j; ŷjÞ þ bLjny;jbŷðx̂j; ŷjÞÞp: ð12Þ
Finally, a column vector C� containing the predicted C�j values for all the m data points can be expressed as
C� ¼ Bp; ð13Þ
where B is an m by 1
2 ðnþ 1Þðnþ 2Þ matrix, defined by
B ¼

a1bðx̂1; ŷ1Þ þ bL1nx;1bx̂ðx̂1; ŷ1Þ þ bL1ny;1bŷðx̂1; ŷ1Þ
a2bðx̂2; ŷ2Þ þ bL2nx;2bx̂ðx̂2; ŷ2Þ þ bL2ny;2bŷðx̂2; ŷ2Þ

..

.

ambðx̂m; ŷmÞ þ bLmnx;mbx̂ðx̂m; ŷmÞ þ bLmny;mbŷðx̂m; ŷmÞ

2666664

3777775: ð14Þ
The goal of the interpolation scheme, then, is to select p such that C� is the best possible approximation to C, where
C ¼ ðC1;C2; . . . ;CmÞT .

One of the simplest ways to find a basis function which is a good approximation to the given data is to select p such thatPm
j¼1 C�j � Cj

� �2
is minimised. However, this will mean that errors in the fit will be equally weighted for all data points in the
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stencil, regardless of their relative distance from the interpolation point. Intuitively, it would make more sense if distant
points were weighted less. For this reason, it is useful to define a weight function wj associated with each data point in
the stencil, which will depend on the spatial relationship between data point j and the interpolation point ðxc; ycÞ. The weight

function is applied to the least squares expression, so that the aim is to select p such that
Pm

j¼1 wj C�j � Cj

� �h i2
is minimised. A

weight function should be a monotonically decreasing function of the (normalised) radial distance between the data point

and the interpolation point, r̂j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂2

j þ ŷ2
j

q
. Singularities at r̂j ¼ 0 are to be avoided, and the weight function must be non-zero

at all stencil data points, since a zero weight at a data point is effectively non-inclusion of the data point in the stencil. One
suitable weight function is the Gaussian function, defined by
wj ¼ e�
r̂2
j

e2 ; ð15Þ
where e is a dimensionless shape parameter. This was the weight function used for the simulations in this paper. In general, a
small value of e results in a sharp penalty surface, i.e. a weight function which penalises errors close to the interpolation
point much more heavily than errors further away. A large value results in a flatter penalty surface. From numerical exper-
iments based on the accuracy in reproducing test functions (see Section 4.1), it was found that e ¼ 1:4 was an appropriate
choice; this value was used for all the simulations in this paper. Note that e is a constant, and so the same weight function is
used for all stencils and data points.

Recall that the aim of the moving least squares method (with a weight function) is to minimise
Pm

j¼1 wj C�j � Cj

� �h i2
. This is

equivalent to minimising
Pm

j¼1 wjC
�
j �wjCj

� �2
. Let a weight matrix w be defined by
w ¼

w1 0 0 � � � 0
0 w2 0 � � � 0
0 0 w3 � � � 0

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � wm

266666664

377777775; ð16Þ
so that
w1C�1 �w1C1

w2C�2 �w2C2

..

.

wmC�m �wmCm

8>>>><>>>>:

9>>>>=>>>>; ¼ wC� �wC: ð17Þ
Therefore
Pm

j¼1 wjC
�
j �wjCj

� �2
can be minimised by minimising jwC� �wCj. From (13), this is the same as minimising

jðwBÞp� ðwCÞj.
According to linear algebra theory (see [7, pp. 417–426]), jðwBÞp� ðwCÞj will be minimised when
p ¼ ððwBÞTðwBÞÞ�1ðwBÞTðwCÞ ¼ DC; ð18Þ
where D ¼ ððwBÞTðwBÞÞ�1ðwBÞT w. Note that D is a rectangular matrix of 1
2 ðnþ 1Þðnþ 2Þ rows by m columns.

The polynomial coefficients thus calculated can be used for interpolation of the function and its derivatives. These are
given by
f �ðx̂; ŷÞ ¼ bðx̂; ŷÞp ¼ bðx̂; ŷÞDC; ð19Þ
f �x̂ ðx̂; ŷÞ ¼ bx̂ðx̂; ŷÞp ¼ bx̂ðx̂; ŷÞDC; ð20Þ
f �ŷ ðx̂; ŷÞ ¼ bŷðx̂; ŷÞp ¼ bŷðx̂; ŷÞDC: ð21Þ
Since the spatial derivatives obtained are taken with respect to x̂ and ŷ, it is necessary to re-dimensionalise these in order to
obtain the dimensional versions of these quantities. This can be done using (5) and (6).

Note that the row vectors bðx̂; ŷÞD;bx̂ðx̂; ŷÞD and bŷðx̂; ŷÞD are dependent only on the stencil structure and the weighting
function w. Hence these row vectors can be pre-computed and stored, then reused as many times as required for time vary-
ing data in the C vector.

3. Singularities

It has been noted [3,2,14,15] that singular cases can exist when using moving least squares, where the matrix requiring
inversion for a given stencil is not invertible. In particular, it has been observed that when using a polynomial basis, singu-
larities tend to occur when the data points lie along straight lines, and that these singularities correspond to situations where
insufficient information is available to uniquely define the polynomial. In this section, a general criterion for predicting sin-
gularities will be derived.
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3.1. Singularity conditions for this formulation

The calculation procedure for finding a unique polynomial which best fits a given set of values at a stencil’s data points
could, in principle, fail for two separate reasons: it would fail if there were no best fit polynomial or if there were multiple
best fit polynomials. But a best fit polynomial must exist, since an arbitrarily chosen polynomial will fit the data points with
some total error obtained. If no other polynomial can be found which fits with a smaller total error, then the original poly-
nomial gives a best fit. Otherwise, if any other polynomials can be found which provide a better fit, then the best one of those
must give a best fit. Therefore, a moving least squares stencil will be singular if and only if multiple best fit polynomials exist.

From (18), it can be seen that having multiple values of the p vector (i.e. the best fit polynomial coefficients) correspond-
ing to the same C vector (the values at the data points) is possible if and only if there can be multiple values of the D matrix.
Moving least squares stencils are therefore singular if and only if multiple D matrices exist for the stencil. Now the D matrix
depends only on the w and B matrices, so the singularity properties of moving least squares stencils must therefore depend
only on the weighting function chosen, the stencil geometry and the types of the data points making up the stencil. Most
importantly, the D matrix does not depend on C, and so the singularity properties of moving least squares stencils are
not dependent on the actual values specified at the data points. Thus any argument concerning the stability of the moving
least squares scheme that can be advanced for one particular set of values at the data points must apply also to all possible
sets of data point values.

As an aside, it should also be noted that, providing that none of the weights are equal to zero, the w matrix has no effect
on stencil singularity properties. This is because, in the expression requiring inversion in (18), the w matrix only exists as a
pre-multiplication of the B matrix, and the rank of the B matrix cannot be affected by pre-multiplication by a diagonal matrix
possessing only non-zero values on the diagonal.

Consider the process of finding an nth order polynomial of best fit through a stencil of m data points, each one specifying a C
value equal to zero (in the sense of (1)). In view of the above argument about the stability of stencils being independent of the
data point values, the rest of this discussion may focus on this homogenous case, without any loss of applicability to the more
general case of an arbitrary set of values. For this homogenous case, an exact fit (and therefore the best fit) will be obtained if
Bp ¼ 0: ð22Þ
Clearly, one set of polynomial coefficients which always satisfies this equation (and thus produces an exact fit) is the
trivial solution p ¼ 0. If there is any other solution, p0, then kp0 (where k is any real number) must also be a solution
and so there will be infinitely many sets of polynomial coefficients which fit the data points exactly; in this case, a
unique best fit polynomial cannot be obtained, and so the stencil must be singular. On the other hand, if the trivial
solution is the only solution to (22), then by definition that is the unique best fit polynomial, and so the stencil is
non-singular. In other words, a moving least squares stencil will be singular for homogenous data point values if
and only if the B matrix for the stencil possesses a non-trivial null space. Since the singularity properties of stencils
are known to be independent of the values at the data points, then it is also true that a moving least squares stencil
will be singular for arbitrary data point values if and only if the B matrix for the stencil possesses a non-trivial null
space.

This somewhat abstract result can be extended, to provide a numerically reliable test for detecting singular stencils and
greater insight into the effects of stencil geometry. One way in which this may be done is by means of the singular value
decomposition of B. The singular value decomposition allows B to be expressed as
B ¼ U

D1 0 � � � 0
0 D2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � D1
2ðnþ1Þðnþ2Þ

2666664

3777775 VT
1 VT

2 � � � VT
1
2ðnþ1Þðnþ2Þ

h iT
; ð23Þ
where U is a square matrix with m rows and 1/2(n + 1)(n + 2) orthogonal columns (so that UUT ¼ UT U ¼ I) and the V vectors
are row vectors with 1

2 ðnþ 1Þðnþ 2Þ columns (each vector being orthogonal to and linearly independent from the rest). The
null space of B can thus be found by finding the null space of a much simpler matrix W, i.e. solving
Wp0 ¼ 0 ð24Þ
for p0, where
W ¼

D1V1

D2V2

..

.

D1
2ðnþ1Þðnþ2ÞV1

2ðnþ1Þðnþ2Þ

2666664

3777775: ð25Þ
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It should be noted that, since the V vectors are linearly independent, the W matrix will be full rank if and only if all the D
values are non-zero (or, from a practical numerical point of view, have magnitudes which are all above some small threshold
value). In this case the only solution for p0 is the null vector and the stencil is non-singular. If one or more of the D values are
zero, then W must be less than full rank, and so there will be an infinite number of possible solutions for p0 and the stencil
will be singular. This, then, is a reliable test for determining whether or not a stencil is singular.

The null space of the B matrix (which is the same as the null space of the W matrix) can be thought of as a set of poly-
nomial coefficients which generate C� values of zero at all stencil data points. If p0 is a non-trivial member of the null space of
B, therefore, the relation ðajbðx̂j; ŷjÞ þ bLjnx;jbx̂ðx̂j; ŷjÞ þ bLjny;jbŷðx̂j; ŷjÞÞp0 ¼ 0 defines an algebraic constraint which is obeyed at
each data point j in the stencil. The set of linearly independent p0 vectors in the null space of B thus provides the complete
basis to the set of algebraic constraints of nth order obeyed by the coordinates of the stencil’s data points. The fact that the
stencil coordinates obey any such nth order algebraic constraint at all can be thought of as the geometrical cause of the sten-
cil’s singularity. These constraint equations will be termed ‘spanning polynomials’, for reasons which will become apparent
when the special case of stencils consisting only of function specified data points is considered.

It is a well known fact of linear algebra that the vectors in the columns of the right hand matrix (V) of a matrix’s singular
value decomposition which correspond to singular values equal to zero in the diagonal matrix form a complete basis for the
null space of the original matrix [6]. This means the coefficients for the family of polynomials which span a stencil can be
generated by taking a linear combination of the V vectors corresponding to the D values which are equal to zero. Since
the ordering of the rows in (25) is arbitrary, it is reasonable to assume that the rows in this equation are ordered such that
the singular ðDÞ values are ordered from smallest magnitude to largest magnitude. (If the singular value decomposition algo-
rithm does not produce output with this property, then the rows of (25) may be sorted.) Suppose that there are s singular
values equal to zero, where 1 6 s 6 1

2 ðnþ 1Þðnþ 2Þ. (In the case when s ¼ 0 the stencil is not singular and so the only span-
ning polynomial is the trivial polynomial, with all coefficients equal to zero.) In view of the assumed ordering, the zero sin-
gular values will then be D1;D2; . . . Ds, and their corresponding V vectors will be V1;V2; . . . Vs. The family of spanning
polynomials can then be expressed as
p0 ¼ g1VT
1 þ g2VT

2 þ � � � þ gsV
T
s ; ð26Þ
where g1;g2; . . . ;gs are real parameters which may be varied arbitrarily to generate the family of spanning polynomials. Note
that the transpose operators are necessary because p0 is defined as a column vector whereas the V vectors are defined as row
vectors. The parameter s can be thought of as the number of dimensions in the space of spanning polynomials.

3.2. Generalisation to arbitrary basis function

The results obtained for the polynomial based moving least squares scheme can easily be extended to a scheme with an
arbitrary basis function. Let the basis function chosen consist of n linearly independent components, each an arbitrary func-
tion of x̂ and ŷ, so that the basis vector may be redefined as
bðx̂; ŷÞ ¼ g1ðx̂; ŷÞ; g2ðx̂; ŷÞ; . . . ; gnðx̂; ŷÞð Þ: ð27Þ
The spatial derivative vectors are then
bx̂ðx̂; ŷÞ ¼
@g1

@x̂

����
ðx̂;ŷÞ

;
@g2

@x̂

����
ðx̂;ŷÞ

; . . . ;
@gn

@x̂

����
ðx̂;ŷÞ

 !
ð28Þ
and
bŷðx̂; ŷÞ ¼
@g1

@ŷ

����
ðx̂;ŷÞ

;
@g2

@ŷ

����
ðx̂;ŷÞ

; . . . ;
@gn

@ŷ

����
ðx̂;ŷÞ

 !
ð29Þ
and so (14) can then be used to define the B matrix. If this matrix possesses a non-trivial null space, then the stencil is sin-
gular; otherwise, it is non-singular. The rest of the analysis from the previous subsection proceeds in much the same manner,
except that now there are n singular values and V vectors (not 1

2 ðnþ 1Þðnþ 2Þ) and the p vector now represents the coeffi-
cients of the arbitrary basis function components.

It should be noted that singularities in moving least squares stencils are highly basis function dependent. It is quite pos-
sible for a stencil which is singular when using a polynomial basis function not to be singular when using some other basis,
and vice versa.

At this point, it is instructive to consider what happens when an arbitrary basis function is extended to include additional
terms. Suppose that a given stencil is singular when using a basis function bðx̂; ŷÞ, as defined by (27). This means that the
corresponding B matrix given by (14) possesses a non-trivial null space, one member of which is ðp1; p2; . . . ; pnÞ

T . If an ex-
tended basis function were used instead, namely
bextðx̂; ŷÞ ¼ g1ðx̂; ŷÞ; g2ðx̂; ŷÞ; . . . ; gnðx̂; ŷÞ; gnþ1ðx̂; ŷÞ
� �

; ð30Þ
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then a B matrix may be obtained for the stencil using the extended basis, which is
Bext ¼

a1bextðx̂1; ŷ1Þ þ bL1nx;1bext;x̂ðx̂1; ŷ1Þ þ bL1ny;1bext;ŷðx̂1; ŷ1Þ
a2bextðx̂2; ŷ2Þ þ bL2nx;2bext;x̂ðx̂2; ŷ2Þ þ bL2ny;2bext;ŷðx̂2; ŷ2Þ

..

.

ambextðx̂m; ŷmÞ þ bLmnx;mbext;x̂ðx̂m; ŷmÞ þ bLmny;mbext;ŷðx̂m; ŷmÞ

2666664

3777775: ð31Þ
Bext must also possess a non-trivial null space, since the vector ðp1; p2; . . . ; pn;0Þ
T is a member of the null space of Bext, and is

clearly non-trivial. This proves that a singular stencil remains singular when additional terms are added to the basis function.
An important corollary of this is that a stencil which is singular when fitting an nth order polynomial must also be singular
when fitting a polynomial with order greater than n, since this entails the addition of terms to the basis function.

3.3. The special case of function-specified data points

In the special case where a stencil consists exclusively of function specified data points (i.e. data points with a ¼ 1; bL ¼ 0),
the singularity theory presented previously becomes a great deal simpler and more intuitive. For a start, the B matrix (when
using an nth order polynomial basis) is reduced to a Vandermonde matrix, namely
B ¼

1 x̂1 ŷ1 x̂2
1 x̂1ŷ1 ŷ2

1 � � � x̂n
1 x̂n�1

1 ŷ1 � � � x̂1ŷn�1
1 ŷn

1

1 x̂2 ŷ2 x̂2
2 x̂2ŷ2 ŷ2

2 � � � x̂n
2 x̂n�1

2 ŷ2 � � � x̂2ŷn�1
2 ŷn

2

..

. ..
. ..

. ..
. ..

. ..
. . .

. ..
. ..

. . .
. ..

. ..
.

1 x̂m ŷm x̂2
m x̂mŷm ŷ2

m � � � x̂n
m x̂n�1

m ŷm � � � x̂mŷn�1
m ŷn

m

2666664

3777775: ð32Þ
It can easily be seen that the null space of this matrix is the set of all polynomial coefficients p0 such that
1; x̂j; ŷj; x̂2

j ; x̂jŷj; ŷ2
j ; . . . ; x̂n

j ; x̂
n�1
j ŷj; . . . ; x̂jŷn�1

j ; ŷn
j

� �
p0 ¼ 0 for all data points j in the stencil. In effect, this means the null space

of the B matrix (for nth order polynomial based moving least squares) generated from a stencil consisting only of function
specified data points is the set of all nth (or lower) order polynomial relationships equating to zero which sweep out all of the
stencil’s data points. This provides an alternative way of looking at singular stencils: function specified stencils (for nth order
polynomial based moving least squares) are singular if and only if there exists an nth (or lower) order polynomial relation-
ship equating to zero which sweeps out all of the stencil’s data points.

An important corollary of this is that an nth order polynomial surface cannot be uniquely fitted to a stencil of (function
specified) data points, if it is possible to draw n straight lines that between them pass through all the data points in the sten-
cil. The proof for this is simple. A single straight line is the set of all ðx̂; ŷÞ points satisfying the general equation
a1x̂þ b1ŷþ c1 ¼ 0, where at least one of a1; b1 is non-zero. The general equation for n straight lines is then the nth order poly-
nomial ða1x̂þ b1ŷþ c1Þða2x̂þ b2ŷþ c2Þ � � � ðanx̂þ bnŷþ cnÞ ¼ 0, where at least one of ai; bi is non-zero for i 2 1; . . . ;n. If all the
data points can be swept out by n straight lines, then there is an nth order polynomial in x̂ and ŷ which equates to zero and
passes through all the data points in the stencil, and therefore it will be impossible to fit a unique nth order polynomial to the
stencil. This result explains the observations made by Schoenauer and Adolph [16] and Bodin [2]. However, it is important to
note that n straight lines are not the only possible nth order polynomials, and therefore there are many other configurations
of the data points that also result in singularities.

Fig. 1, for example, shows a stencil of function specified data points (shown as hollow circles) which is singular when fit-
ting a third order polynomial in x̂ and ŷ. This stencil is singular because it is possible to sweep out all its data points with a
third order polynomial relation in x̂ and ŷ. In fact there are many such relations, and the entire family of spanning polyno-
mials may be expressed as
aŷþ 4bx̂2ŷ� ðaþ bÞŷ3 ¼ 0; ð33Þ
where a and b are arbitrary parameters that may be varied in order to generate the family. The number of arbitrary param-
eters may be reduced to 1 by dividing through by b, as long as the special case of b ¼ 0 is taken into account separately. Fig. 1
also shows the spanning polynomial for a number of values of the parameter a

b, as well as for b ¼ 0. It can be seen that there
are 6 fundamentally different cases in the family, namely:

� Three horizontal lines;
� An ellipse and one horizontal line;
� Two vertical lines and one horizontal line;
� A hyperbola and one horizontal line;
� Two skew lines and one horizontal line;
� An inverted hyperbola and one horizontal line.

The important conclusion that may be drawn from this example is that, since this family of spanning polynomials
(between them) sweeps out the entire plane, adding one more data point is guaranteed to be insufficient to resolve the



Fig. 1. A third order singular stencil, with two independent null space parameters, a and b. The sub-figures show the family of third order polynomials in x̂
and ŷ that fit the data points. All data points are function specified, and are shown as hollow dots.
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Fig. 1 (continued)
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singularity. This is because, wherever the new data point is located, there exists a member of the family of spanning poly-
nomials which spans the new data point also. In fact, at least two new data points must be added in order to resolve the
singularity in this example. The theory behind this is explored in more detail in Section 3.5. It is also worth noting that
the type of data points present in a stencil can have a very significant impact on its singularity properties. Fig. 2(a), for
instance, is a stencil consisting of two function specified data points (solid dots) and one derivative specified data point
(hollow dot, with arrow indicating direction of spatial derivative). This stencil is non-singular when fitting a first order poly-
nomial. However, this stencil would become singular if the derivative specified data point were replaced with a function
specified data point or if, instead, the direction of the spatial derivative were made parallel to the line that the data points
lie on. The converse can also occur: Fig. 2(b) also has two function specified data points and one derivative specified data
point, but is singular (when using a first order polynomial basis) because the direction of the spatial derivative is parallel
to the line that the two function specified data points lie on. If the derivative specified data point were replaced with a
function specified data point, however, then the stencil would become non-singular. The existence of such subtle behaviour
highlights the importance of using the general theory of singularities when using a mixture of data point types.

3.4. Addition of data points to singular stencils

Before designing an algorithm for building non-singular stencils, it is necessary to consider what would happen to the
family of spanning polynomials if a new data point were added to a singular stencil. Suppose that the new data point is lo-
cated at ðx̂N; ŷNÞ and has data point properties of a; bL;nx and ny (as defined in (8)). The spanning polynomial p0 of the original
singular stencil will also span the new data point when
Fig. 2.
as solid
specifie
abðx̂N; ŷNÞ þ bLnxbx̂ðx̂N ; ŷNÞ þ bLnybŷðx̂N; ŷNÞ
h i

p0 ¼ 0: ð34Þ
If this equation is combined with (26), then it may be written as
j1g1 þ j2g2 þ � � � þ jsgs ¼ 0; ð35Þ
where ji ¼ ½abðx̂N; ŷNÞ þ bLnxbx̂ðx̂N; ŷNÞ þ bLnybŷðx̂N; ŷNÞ�VT
i .

There are two possible outcomes that could occur when a new data point is added to a singular stencil. One possibility is
that the new data point happens to be spanned by all of the polynomials defined by vectors V1;V2; . . . ;Vs (which form a com-
plete basis to the family of spanning polynomials for the original stencil). In this case, the new data point will be spanned by
every polynomial in the family. Moreover, all of the j values in (35) will be equal to zero, and so that equation will provide
no information concerning the g values or the relationship between them. Thus, the new data point does not help to fix the
singularity, since the family of spanning polynomials has not been reduced in any way.

The other possible outcome of adding the new data point is that at least one of the polynomials defined by vectors
V1;V2; . . . ;Vs does not span the new data point. This means that at least one of the j values ðjjÞ will be non-zero. It is then
possible to solve for gj in terms of the other g parameters, obtaining the expression
gj ¼ �
1
jj

X
i¼1;...;s;i–j

jigi: ð36Þ
(a) (b)

Examples of stencils which are (a) non-singular and (b) singular when using a first order polynomial basis. Function specified data points are shown
, black dots. Hollow circles represent the derivative specified data point, with the arrow indicating the direction in which the spatial derivative is
d.
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This means that the family of polynomials which spans both the original stencil and the new data point can be written as a
vector space with s� 1 dimensions, i.e. one dimension less than the family of polynomials spanning just the original stencil.
Thus it can be seen that the addition of a new data point helps to reduce the size of the family of spanning polynomials, as
long as at least one of the polynomials defined by the V vectors of the original stencil does not span the new data point.
Moreover, the dimensions of the family of spanning polynomials will be reduced by exactly one regardless of whether there
was only one V vector polynomial that did not span the new data point or there were any number up to and including s.

There is a special case that also deserves a mention, and that is when the family of polynomials spanning the original
stencil is one dimensional, i.e. when s ¼ 1. The family is then simply
p0 ¼ g1VT
1: ð37Þ
If the spanning polynomial family is also to span a new data point, then it must be the case that
j1g1 ¼ 0; ð38Þ
where j1 ¼ ½abðx̂N; ŷNÞ þ bLnxbx̂ðx̂N; ŷNÞ þ bLnybŷðx̂N; ŷNÞ�VT
1. If the new data point is spanned by the polynomial corresponding

to V1, then j1 ¼ 0 and so g1 could have any value whatsoever; hence the new data point will be completely useless. How-
ever, if the new data point is not spanned by the polynomial corresponding to V1, then j1 – 0 and so g1 ¼ 0; hence, the only
polynomial spanning both the original stencil and the new data point is the trivial polynomial (all coefficients equal to zero).
If this is the case, adding the new data point removes the singularity and makes the stencil stable.

In all cases, adding a new data point to a singular stencil is effective at reducing the singularity if and only if it is not
spanned by all the spanning polynomials of the original stencil.

3.5. Algorithm for building non-singular stencils

Stencil building algorithms can employ the theory presented in this paper in the following ways:

� A singular stencil may be detected by computing the singular value decomposition of the stencil’s B matrix. If all the D
values are greater in magnitude than some small threshold value, then the stencil is considered to be non-singular; there-
fore, the stencil building procedure is complete. If one or more of the D values is smaller in magnitude than the threshold,
then the stencil is considered to be singular. In this case, the stencil requires more data points. A value of 0.2 was found to
be an appropriate threshold for this test, and was used in all the simulations discussed in this paper.

� For a singular stencil, the V vector corresponding to the smallest magnitude D value is the polynomial that most accurately
spans the data points of the stencil. This is thus the best choice for use in spanning tests. (In view of the aforementioned
ordering convention of right singular vectors, this vector is V1.) A new data point will be more effective at removing the
singularity if it lies further off this spanning polynomial, so the best choice is the data point for which
jðabðx̂N; ŷNÞ þ bLnxbx̂ðx̂N; ŷNÞ þ bLnybŷðx̂N; ŷNÞÞV1j is maximised. This principle was applied in all the simulations discussed
in this paper.

� If the null space of the B matrix has more than one dimension, then adding a single data point cannot remove the singu-
larity by itself. However, it may reduce the dimensions of the null space by one. Subsequent data point additions must be
used to complete the singularity removal.

It is also desirable that stencil building algorithms take the following considerations into account. Note that algorithms
which do this can often end up building larger stencils than necessary, but the trade off may be worthwhile in many
applications:

� The data points included in a stencil should, as much as possible, be local to the interpolation point. This may be achieved by
requiring that a new data point can only be added to a stencil if it is adjacent (in terms of the mesh) to an existing data point
in the stencil. A stronger requirement may also be imposed, which is that all the data points at a given connectivity depth to
the interpolation point must be added to the stencil before any data point with a higher connectivity depth will be consid-
ered for addition. This more stringent locality requirement was applied in all the simulations discussed in this paper.

� It is well known in the literature that better spectral performance may be obtained from finite difference schemes when
symmetric stencils are employed. (In one spatial dimension, these are the popular central difference schemes.) Similarly, it
may be shown that moving least squares stencils provide better spectral performance when they are as close as possible to
being symmetric about axes parallel and normal to the interpolation edge (both of which pass through the interpolation
point itself). Stencil building algorithms should therefore attempt to build balanced stencils, by adding mirror data points
for each new data point chosen according to the singularity theory. The stencil building algorithm used for simulations
presented in this paper does this.

When starting to build a stencil, an initial core of data points must be selected for the stencil, so that a B matrix may be
constructed and used to determine which data point should be added to the stencil next. Ideally, this core should be as small
as possible, so that inclusion of redundant data points is avoided. Also, it is desirable for the data points in the core stencil to
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be very close to the interpolation point. If the edge on which an interpolation is required is on a domain boundary, then the
interpolation point overlaps with a data point available from the boundary conditions; this data point is an appropriate
choice for the core stencil. Otherwise, if the interpolation edge is internal to the domain, then its closest data points are lo-
cated at the centroids of the two elements adjacent to it; these data points are an appropriate choice for the core stencil.
These choices were used for all the simulations in this paper.

The stencil building algorithm used in this paper is outlined in Algorithm 1, with SingularityTolerance ¼ 0:2. Typical sten-
cils generated by this algorithm for third order moving least squares are shown in Figs. 3–5.

Algorithm 1. A non-singular stencil building algorithm

Require: Edge = the edge requiring a stencil to be built around it, SingularityTolerance = the largest magnitude a singular
value may have while still being considered equal to zero

Ensure: Stencil = the list of all data points in the finished stencil
1: if Edge is a boundary edge then
2: Stencil the midpoint of Edge
3: else [Edge is an internal edge]
4: Stencil the centroids of the two elements adjacent to Edge
5: endif
6: loop
7: Candidates the set of data points which are adjacent to the current stencil, but which are not already part of it.
8: while there are still data points in Candidates do
9: Find the SingularValues and RightSingularVectors of the current stencil’s B matrix, using the singular value

decomposition
10: if there are no SingularValues with a magnitude less than SingularityTolerance then
11: return
12: endif
13: Choice the candidate data point for which jðabðx̂N; ŷNÞ þ bLnxbx̂ðx̂N; ŷNÞ þ bLnybŷðx̂N; ŷNÞÞV1j is maximum.
14: Candidates Candidates n Choice
15: Stencil Stencil [ Choice
16: Set Mirror1;Mirror2 and Mirror3 to be the locations of the mirror images of Choice about axes parallel and normal

to Edge.
17: if there is a data point in Candidates which is closer to Mirror1 than any data point in Stencil is then
18: ExtraChoice the closest data point to Mirror1 in Candidates
19: Candidates Candidates n ExtraChoice
20: Stencil Stencil [ ExtraChoice
21: endif
22: if there is a data point in Candidates which is closer to Mirror2 than any data point in Stencil is then
23: ExtraChoice the closest data point to Mirror2 in Candidates
24: Candidates Candidates n ExtraChoice
25: Stencil Stencil [ ExtraChoice
26: endif
27: if there is a data point in Candidates which is closer to Mirror3 than any data point in Stencil is
28: ExtraChoice the closest data point to Mirror3 in Candidates
29: Candidates Candidates n ExtraChoice
30: Stencil Stencil [ ExtraChoice
31: end if
32: end while
33: end loop
4. Verification of scheme

4.1. Verification using test functions

4.1.1. General approach
A very simple way of testing the accuracy of an interpolation scheme on a given mesh is to make up an analytical function

f and evaluate this test function at the element centroids (and boundary edge midpoints) of the mesh. These values may be
used as inputs to the interpolation scheme, from which estimates of the value of f (and its spatial derivatives) at the edge
midpoints may be obtained. Finally, the accuracy of the interpolation scheme may be assessed by comparing the interpolated
values at the edge midpoints with values obtained from the analytical function.



Fig. 3. Example stencils for moving least squares on a regular mesh. The third order moving least squares stencil for interpolating on the edge marked e1 is
enclosed by the dashed line, while the stencil for interpolating on the edge marked e2 is enclosed by the solid line. The hollow black dots are data points
from boundary conditions and the solid black dots are data points at the element centroids.
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Fig. 4. Example stencil for moving least squares on an irregular mesh. The third order moving least squares stencil for interpolating on the edge marked e1
is shown. This stencil consists only of element centroid data points, which are shown as black dots. The numbers indicate the connectivity depth of the data
points to the two initial data points (which are marked with zeros).
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Fig. 5. Example boundary edge stencil for moving least squares on a locally regular mesh, when the value of f is specified on the boundaries. The third order
moving least squares stencil for interpolating on the edge marked e1 is shown. This stencil consists of element centroid data points (solid black dots) and
boundary edge midpoint data points (hollow dots). The numbers indicate the connectivity depth of the data points to the one initial data point (which is
marked with a zero).
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Specifically, the overall f interpolation accuracy may be gauged by computing
Ef ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i2 edges f �i � fi

� �2
q
ðfmax � fminÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
nedges
p ; ð39Þ
where f �i is the interpolated value of f on edge i; fi is the analytical value of f on edge i; nedges is the number of edges in the
mesh and fmax and fmin represent the extreme values taken by f over the domain. This quantity is the root mean square inter-
polation error in f, normalised by the range of the test function. Likewise, the error in the interpolation of the x direction
spatial derivative may be gauged using
Edf=dx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i2 edges

df �

dx

���
i
� df

dx

���
i

� �2
r

df
dx

���
max
� df

dx

���
min

� � ffiffiffiffiffiffiffiffiffiffiffiffi
nedges
p ; ð40Þ
while the error in the interpolation of the y direction spatial derivative may be gauged using Edf=dy, which is given by a similar
expression.

For certain purposes, it is more meaningful to study the worst interpolation errors, rather than the overall interpolation
accuracy. The worst f interpolation errors may be gauged using
Mf ¼
max
i2edges

f �i � fi

�� ��
ðfmax � fminÞ

; ð41Þ
while the worst spatial derivative errors may be gauged using Mdf=dx and Mdf=dy, which are given by similar expressions.
An appropriate choice for f is a sinusoidal function in both x and y, since this is an infinite order function, varies with both

x and y and has the same smoothness properties throughout the domain. In contrast, finite order polynomials would not be
appropriate, since they are of finite order and can be reproduced exactly with a moving least squares scheme of the same
order.

Experience and common sense suggests that test function values will be easier to replicate accurately using interpolation
if the test function is smooth at the scale of the mesh elements. For the analytical values of a sinusoidal test function to be
reproduced accurately by interpolation, there need to be several samples per period of the wave. In other words, the period
of a sinusoidal test function needs to be several times the size of a typical mesh element if accurate reproduction is to be
obtained. The number of mesh elements N per test function period may then be taken as a measure of the difficulty of
the test function. The performance of a given interpolation scheme may be gauged by using a range of values of N, in order
to find out how quickly the scheme’s performance degenerates as N is reduced towards 2, the Nyquist limit.

Consider a regular rectangular mesh with a mesh spacing of Dx in the x direction and Dy in the y direction. In view of the
previous discussion, a suitable test function for this class of mesh is
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f ðx; yÞ ¼ cos
2p

NDx
xþ 2p

NDy
y

� 	
; ð42Þ
where N is a parameter which determines the number of data points per period of the wave along each coordinate axis. N
does not need to be an integer, but since N ¼ 2 corresponds to the Nyquist limit, values of N greater than 2 must be selected.

The test function may be extended to irregular meshes if some rough approximations are applied. To this end, a general
mesh will be represented by a regular rectangular mesh, which is in some sense equivalent to the original mesh. Let element
i have a maximum x value (i.e. at its rightmost corner node) of xi;max, minimum x value of xi;min, maximum y value of yi;max and
minimum y value of yi;min. Further, let Ai be the area of element i and M be the number of elements in the mesh. The aspect
ratio of the rectangular elements in the equivalent mesh should be similar to the aspect ratio of the elements in the original
mesh, and so an equivalent aspect ratio R may be defined as
R ¼
1
M

P
iðyi;max � yi;minÞ

1
M

P
iðxi;max � xi;minÞ

¼
P

iðyi;max � yi;minÞP
iðxi;max � xi;minÞ

: ð43Þ
In effect, R is the ratio between the average y range of the elements to the average x range. This measure gives reasonable
results on a range of meshes. Next, a basic mesh scale D may be calculated by taking the square root of the average element
area, i.e.
D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

X
i

Ai

s
: ð44Þ
Finally, the equivalent mesh scales in the x and y directions may be computed using
Dx ¼
Dffiffiffi
R
p ð45Þ
and
Dy ¼ D
ffiffiffi
R
p

; ð46Þ
so that DxDy ¼ 1
M

P
iAi and Dy

Dx
¼ R. Note that if this method is applied to a regular rectangular mesh, the equivalent mesh is the

same as the original mesh, as expected. With this approximation, test function (42) may be applied to unstructured meshes
of triangles and/or quadrilaterals, producing consistent results.

For example, Fig. 6 shows the graphs of log10ðEf Þ; log10ðEdf=dxÞ and log10ðEdf=dyÞ versus log10ðNÞ for third order moving least
squares, when test function (42) is applied in this manner to the unstructured mesh displayed in Fig. 12. Logarithms are used
on both axes, in order to clearly represent the shape of the error curves. Similarly, Fig. 7 shows the same for the unstructured
mesh displayed in Fig. 17. These curves represent the decay in error as N is increased, and are typical in shape of the error
curves which may be obtained on a wide variety of unstructured meshes. Since N is the ratio of the wavelength of the test
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Fig. 6. Interpolation test function results for the mesh in Fig. 12.
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Fig. 7. Interpolation test function results for the mesh in Fig. 17.
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function to the scale of the mesh, these graphs were obtained by increasing the wavelength of the test function, while keep-
ing the mesh scale constant. (This is, in principle, equivalent to reducing the mesh scale while keeping the test function
wavelength constant.) As expected, the errors decay rapidly when this happens. This demonstrates the accuracy of the mov-
ing least squares scheme.

Theory predicts that the third order moving least squares scheme has an f interpolation error proportional to D4, i.e. pro-
portional to N�4. (Informally, this is because the nth order polynomial of best fit is a close approximation to the nth order
Taylor representation of f at the interpolation point. The leading terms of the f interpolation error are therefore of order
nþ 1. A formal proof along similar lines is known to the authors, but is omitted for brevity.) The figures support the theory,
as the curve for log10ðEf Þ versus log10ðNÞ has a straight line section with a gradient of approximately �4 in both cases (�3.98
and�3.93 for Figs. 6 and 7, respectively). Thus the third order moving least squares scheme is fourth order accurate for inter-
polating f, as expected.

4.1.2. Selection of the value of �
The effect of varying the shape parameter � may be assessed using test functions. For this purpose, (42) was used with

N ¼ 9:94. This choice is arbitrary, however similar results are obtained using other test functions. Using third order mov-
ing least squares (with SingularityTolerance ¼ 0:2) on the mesh shown in Fig. 12, the normalised maximum errors may be
plotted for various values of �. This is shown in Fig. 8. Based on this graph, and similar data for other meshes and test
functions, a value of � ¼ 1:4 was chosen. Although this value is slightly higher than the optimum value in this case, it
is prudent to make such a selection, as the errors increase much more quickly if � is too small rather than too large,
and some allowance must be made for variations in the effects of � when different meshes are used. Note also that this
choice may not be anywhere near optimal for moving least squares with a higher order polynomial basis, as the stencils
are then larger. The data points on the periphery of the stencil, which are necessary for singularity avoidance, may then be
effectively removed from the stencil by being assigned a weight which is very close to zero, if the same value of � were
used. It is therefore expected that � will need to be larger for higher order moving least squares schemes, in order to ex-
tend the range of non-zero weights.

4.1.3. The importance of removing singularities
The importance of detecting and correcting singularities may be demonstrated by reducing the value of SingularityToler-

ance towards zero, thus allowing stencils to be built which are very close to being singular. It is expected that test functions
will then be interpolated poorly. This may also serve as a basis for tuning the SingularityTolerance parameter.

To that end, (42) was used with N ¼ 9:94. This choice is arbitrary, however similar results are obtained using other test
functions. Using third order moving least squares (with � ¼ 1:4) on the mesh shown in Fig. 12, the normalised maximum
errors may be plotted for various values of SingularityTolerance. This is shown in Fig. 9. It may be seen that the errors increase
dramatically as SingularityTolerance is reduced, indicating the presence of undetected singular stencils. The errors are so
large, that a logarithmic scale was required for plotting the errors in the derivatives. Such enormous errors would spell disas-
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ter for any numerical simulation which uses the moving least squares scheme, most likely causing an instability in the first
few time steps. Thus reliable detection of singular stencils is crucial.

Optimising SingularityTolerance on the basis of Fig. 9 alone would suggest a value of about 1, since this is where the errors
reach a minimum. However, it is also important to consider the sizes of the resulting stencils, since these are strongly af-
fected by the value of the parameter and larger stencils resulting in a more computationally expensive scheme. Fig. 10 shows
the effect of SingularityTolerance on stencil size, again for the mesh shown in Fig. 12. As expected, increasing the parameter
results in larger stencils, since stencils which are further from being singular will be detected as singular and thus expanded.
It is clear that the stencil size increases rapidly once the parameter exceeds about 0.2. On this basis, a value of
SingularityTolerance ¼ 0:2 was selected, since this provides a reasonable compromise between reducing the errors and keep-
ing the stencils small.
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4.2. The benefits of using the improved stencil building algorithm

An effective stencil building algorithm for moving least squares must reliably detect and correct singularities, whilst
building stencils which are small and therefore efficient to use. Existing methods for singularity avoidance, such as setting
a uniform stencil size which is significantly larger than the theoretical minimum required, perform poorly on both counts.
Reliability is hindered by the uncertainty as to whether a given stencil size will be large enough to avoid singularities at all
locations on all possible meshes, regular and irregular. Stencil sizes are excessively large, due to the imposition of the stencil
size required for the worst location in a mesh in all locations. The singularity detection theory presented in this paper solves
both these problems, since individual stencils may then be expanded until they are known to be non-singular, which may be
determined reliably. The value of this approach may be demonstrated by comparing the maximum stencil size obtained to
the average; it is not uncommon for the maximum stencil size to be significantly larger than the average, meaning that the
imposition of a uniform stencil size would have increased the stencil sizes significantly.

The methodologies outlined in this paper also stipulate how the data points added to the stencil to remove a known sin-
gularity may be chosen most efficiently (Algorithm 1). The benefits of this selection method are demonstrated in Table 1,
where the optimal data point selection method (Algorithm 1) is compared to random data point selection and anti-optimal
data point selection (where Algorithm 1 is modified to make the worst selection instead of the best). Various polynomial or-
ders are used, but in all cases � ¼ 1:4 and singularities were detected with SingularityTolerance ¼ 0:2. The mesh used is shown
in Fig. 12. The results show that, at each polynomial order studied, the average stencil obtained using optimal selection is
smaller than that obtained using random selection, which is in turn smaller than that obtained by anti-optimal selection. This
shows that Algorithm 1 does indeed result in smaller stencils, although the benefits are small. Note, however, that all the
schemes involved in this comparison gain the benefits of reliable singularity detection, as discussed in the last paragraph.
Without this, all the stencils in the mesh would need to be as large as the maximum stencil size (for the optimal scheme).

A more significant difference may be obtained when locality enforcement is removed; that is, when it is no longer
required that all data points at a given connectivity depth are added before any at a higher connectivity depth are added.
Table 1
Moving least squares stencil sizes on the mesh shown in Fig. 12. Algorithms compared are optimal data point addition (Algorithm 1), random data point
addition and anti-optimal data point addition. All stencil building algorithms enforce locality and symmetry.

Stencil order Theoretical minimum size Optimal selection Random selection Anti-optimal selection

Min Mean Max Min Mean Max Min Mean Max

1 3 3 5.96 6 3 6.68 8 3 7.81 8
2 6 6 7.97 9 6 7.99 9 6 8.00 9
3 10 10 15.62 19 10 16.33 21 10 17.55 23
4 15 15 18.05 44 15 18.21 45 15 18.34 47



Table 2
Moving least squares stencil sizes on the mesh shown in Fig. 12. Algorithms compared are optimal data point addition (Algorithm 1), random data point
addition and anti-optimal data point addition, except that all stencil building algorithms are modified to enforce symmetry but not locality.

Stencil order Theoretical minimum size Optimal selection Random selection Anti-optimal selection

Min Mean Max Min Mean Max Min Mean Max

1 3 3 5.97 6 3 6.85 16 3 38.53 153
2 6 6 9.58 10 6 10.11 30 6 51.91 303
3 10 10 14.31 18 10 17.12 46 10 87.55 458
4 15 15 20.99 27 15 23.69 80 15 131.07 618
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Table 2 compares the three schemes from Table 1, but each with this modification. It may be seen that, without locality
enforcement, the anti-optimal data selection builds extremely large stencils, while the optimal data selection still builds
small stencils. This demonstrates that the optimal data point selection method does indeed distinguish correctly between
data points which are appropriate and inappropriate for removing singularities. However, most of the benefit of using the
optimal data point selection method may also be obtained by the use of locality enforcement on its own.

4.3. Use of the scheme in a convection–diffusion solver

The moving least squares scheme was used in a simulation developed for solving the two-dimensional convection–dif-
fusion equation, which may be written as
@f
@t
¼ �u

@f
@x
� v @f

@y
þ l @2f

@x2 þ
@2f
@y2

 !
; ð47Þ
where u and v are the components of the convection velocity field in the x and y directions and l is the diffusion coefficient. f
is the variable being convected, which could represent temperature, concentration, etc according to the application. A finite
volume scheme was used, where the value of f is tracked at the centroid of each mesh element. The equation used to obtain
the time derivative of f in each element (with area Aelement and its centroid at ðxe; yeÞ) may be obtained by integrating (47)
over the element’s area and applying the divergence theorem. This yields
Aelement
@f
@t

����
ðxe ;yeÞ

¼
X

p2element edges

Lp l@f �

@n

����
ðxp ;ypÞ

� f �ðxp; ypÞun;p

" #
; ð48Þ
where the index p is used as a subscript to denote quantities evaluated at the midpoint of bounding edge p and Lp is the
length of edge p. The derivative with respect to n indicates a spatial derivative normal to edge p (outwards from the element).
Likewise, un;p is the projection of the local convection velocity in this direction. The asterisk indicates that the quantity in-
volved needs to be obtained using interpolation (except in the special cases where it is known directly from boundary con-
ditions). All interpolations were done using the third order moving least squares scheme, as described previously (with
SingularityTolerance ¼ 0:2 unless otherwise noted). This provides a robust test of the scheme’s accuracy and applicability.

Time stepping was done using 4th order Runge–Kutta, based on (48). The size of the time increment ðDtÞwas determined
using a combination of Fourier and Courant–Friedrichs–Lewy numbers. Let the distance between data points i and j be ri;j, so
that
ri;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞ2 þ ðyi � yjÞ

2
q

: ð49Þ
The time step selected is then
Dt ¼min
ri;jffiffiffiffiffiffiffiffiffiffi

u2þv2
p

Cfl þ l
Fo�ri;j

8><>:
9>=>;; ð50Þ
where Cfl is the Courant–Friedrichs–Lewy number and Fo is the Fourier number. For problems involving a spatially varying
flow field, u and v are taken as averages of their respective values at data points i and j. It should be noted that when
u ¼ v ¼ 0, this expression collapses to the usual definition of the Fourier number for pure diffusion problems. Also, when
l ¼ 0, the expression collapses to
Dt ¼min
Cfl � ri;jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

 �

; ð51Þ
which is a variant on the usual definition of the Courant–Friedrichs–Lewy number. Values of Cfl ¼ 0:5 and Fo ¼ 0:5 were
found to be appropriate for running stable simulations, and were used for the simulations in this paper.
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By way of example, the two-dimensional convection–diffusion equation was solved on the domain illustrated in Fig. 11,
filled with an irregular mesh of quadrilaterals (see Fig. 12). The applied boundary conditions are shown, with the initial con-
dition given by
Fig. 11.
of the p
f ¼ f0e
�ðx�x0 Þ

2þðy�y0 Þ
2

2r2
0 ; ð52Þ
where x0 ¼ y0 ¼ 0:5 m;f0 ¼ 1 and r0 ¼ 0:1 m in this example. Convection velocities of u ¼ v ¼ 1 m s�1 were used, while the
parameter l was assigned a value of 3:0� 10�3 m2 s�1. This problem has the analytical solution [18]
f ¼ r2
0f0

r2
0 þ 2lt

e
�ðx�x0�utÞ2þðy�y0�vtÞ2

2ðr2
0
þ2ltÞ ; ð53Þ
which is useful for verification purposes. The numerical and analytical solutions at times t ¼ 1 s and t ¼ 2 s are shown in
Figs. 13 and 14. It may be seen that the numerical results correspond closely to the analytical solution, which indicates that
the solver is accurate. Note the presence of a minor amount of spurious noise at time t ¼ 1 s, which later disappears. This
noise is visible only because the contour level of zero is shown, and the numerical solution dips very slightly negative inside
that small circle. This occurs because the simulation was run at a Peclet number which is close to the stability limit. In con-
trast, Fig. 15 shows the same simulation at time t ¼ 1 s, when SingularityTolerance ¼ 0:05 instead of 0.2. With this value, the
stencils built are allowed to be much closer to being singular, and so the numerical error is greatly increased. Consequently,
the numerical solution becomes unstable, producing highly inaccurate results in a region containing one or more stencils
that are nearly singular.

4.4. Use in an incompressible Navier–Stokes solver

As an additional test of the robustness of the moving least squares scheme, an incompressible Navier–Stokes solver was
developed which used the scheme for the necessary interpolations. The two-dimensional, incompressible Navier–Stokes
equations are
q
@u
@t
þ @ðu

2Þ
@x
þ @ðuvÞ

@y

� 	
¼ � @p

@x
þ l @2u

@x2 þ
@2u
@y2

 !
;

q
@v
@t
þ @ðvuÞ

@x
þ @ðv

2Þ
@y

� 	
¼ � @p

@y
þ l @2v
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@y2

 !
; ð54Þ
Initial conditions and boundary conditions for propagation of a Gaussian pulse. The initial conditions are shown as contours, the outermost contour
ulse being at 0.05 and increasing at intervals of 0.05 inwards.



Fig. 12. Mesh used for simulating the convection–diffusion of a Gaussian pulse.

5612 S.K.M. Chenoweth et al. / Journal of Computational Physics 228 (2009) 5592–5619
where t is the time, l is the dynamic viscosity, q is the density, p is the pressure and u and v are the velocity components in
the x and y spatial directions respectively. The continuity equation is also required, which is
@u
@x
þ @v
@y
¼ 0: ð55Þ
Since the continuity equation is difficult to apply in incompressible solvers, the preferred equation to use is the Poisson equa-
tion [9]. This is derived from the Navier–Stokes equations, and is
@D
@t
þr � ½Dðu;vÞ� ¼ l

q
r2D� 1

q
r2p�r � ðu; vÞ @ðu; vÞ

@ðx; yÞ

� 
; ð56Þ
where
D ¼ @u
@x
þ @v
@y

ð57Þ
is the divergence and
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Fig. 13. Propagation of a Gaussian pulse. The outermost contour of the pulses are at 0.05 and the contours increase in intervals of 0.05 inwards. The contour
level of 0 appears only in the numerical solution at time t ¼ 1 s, as there is a very small level of numerical noise which makes the solution very slightly
negative in one small region. The line drawn on Fig. 13(d) indicates the section used for the following figure.
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is the transpose of the velocity gradient tensor. (Vector notation is used in the above equation for the sake of brevity.) It
should be noted that the above equation is in effect a scalar transport equation for divergence, including terms for the con-
vection, diffusion and production of divergence. In practice many of the terms of this equation are insignificant, and so it may
be simplified to
@D
@t
¼ � 1

q
r2p: ð59Þ
The incompressible Navier–Stokes equations may be solved using the fractional step method. This method allows the veloc-
ity and pressure fields to be partially decoupled during a time step. First, an intermediate velocity field ðû; v̂Þ is obtained
implicitly by means of the Crank–Nicholson method applied to the Navier–Stokes equations. Note that the pressure gradient
term is not treated implicitly, since this limits the variables which must be solved for to the velocity components. Treated in
this manner, the x direction Navier–Stokes equation yields



Fig. 15. Unstable propagation of a Gaussian pulse, when SingularityTolerance ¼ 0:05, at time t ¼ 1 s. The outermost contour of the pulse is at 0.05 and the
contours increase in intervals of 0.05 inwards. Although the unstable region contains a wider range of values, for reasons of clarity the smallest contour
shown is 0 and the largest is 1.

Fig. 14. Propagation of a Gaussian pulse, showing a cross section of the surface at time t ¼ 2 s. The dashed line is the solution from the solver while the solid
line is the theoretical solution. The two lines lie over the top of each other, and so cannot be distinguished at this scale. The location of the section is shown
in Fig. 13(d).
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� @ðûûþ ununÞ

@x
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where un;vn and pn represent the velocity components and pressure which exist at the start of the time step (which is of
length Dt). The non-linear implicit terms prevent this equation being solved directly by a linear solver, so they must be sim-
plified. It may be shown [11] that this equation may be rewritten as
q
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2ðûþ unÞ
@y2

 !
; ð61Þ



S.K.M. Chenoweth et al. / Journal of Computational Physics 228 (2009) 5592–5619 5615
with a loss of accuracy which is of order Dt2. Similarly, the y direction Navier–Stokes equation yields
q
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: ð62Þ
Next the initial pressure field ðpnÞ is applied in reverse to the ðû; v̂Þ velocity field, to obtain the ðu�;v�Þ velocity field.
u� � û
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¼ 1
q
� @pn

@x
;
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Dt

¼ 1
q
� @pn

@y
ð63Þ
Next the final pressure field is calculated, so that the pressure gradient is exactly what is required in order to force the diver-
gence of the final velocity field to zero. This is done using the simplified Poisson equation, giving
D�

Dt
¼ 1

q
r2pnþ1; ð64Þ
where D� is the divergence of the ðu�;v�Þ velocity field and pnþ1 is the final pressure field. Lastly, the final pressure field is
applied to the ðu�;v�Þ velocity field, in order to force the divergence of the velocity field to zero. (Since the pressure field
was applied once forwards and once in reverse in the earlier steps, the net effect of all three applications of the pressure field
is a single forward application, as required.) Thus
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where unþ1 and vnþ1 are the component of the velocity field at the end of the time step. The fractional step method has two
implicit steps ((61) and (62) for the velocity field, (64) for the pressure field) and two explicit steps ((63) and (65)).

Since a finite volume solver was developed, it was necessary to use the divergence theorem to convert the fractional step
equations into finite volume form, then apply these to a control volume. (In this two-dimensional solver, control volumes are
area elements of the mesh.) If this is done, and the resulting integrals discretised for the straight line segments of each ele-
ment, then (61) to (65) become
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where AC:V: is the area of the element being used as a control volume, the C.V. subscript indicates a velocity taken at the cen-
troid of the element and the i subscript indicates a quantity which is taken at the midpoint of one of the element’s edges. If
ðni;x;ni;yÞ is an outward facing unit vector normal to edge i and li is the length of edge i, then li;x ¼ ni;xli and li;y ¼ ni;yli.
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Note that the above equations incorporate the value and spatial derivatives of both pressure and velocity on the edge
midpoints. These values and derivatives may be expressed as a weighted sum of the values at the element centroids and
known values on the boundaries (from boundary conditions), using the interpolation scheme explained earlier. When this
is done, (66) and (67) then involve implicit references only to velocities at the element centroids. Eqs. (66) and (67) may thus
be used to build a linear system of the form
Fig. 16
exist in
Ax ¼ q; ð71Þ

where A is a column-sparse square matrix and x is a column vector containing the û and v̂ values for each element centroid
in the domain, which must be solved for. (q is a column vector of the same length as x.) Likewise, (69) then involves implicit
references only to pressures at the element centroids. Eq. (69) may thus be used to build a linear system of form (71), where
A is again a column-sparse square matrix but x is this time a column vector containing the pnþ1 values for each element cen-
troid in the domain, which must be solved for.

The two linear systems were solved using the biconjugate gradient stabilised method. [1] In order to conserve memory,
the matrices for the linear systems were stored in sparse format. No matrix preconditioner was used. Let ri be the residual for
the ith row of the linear system (i.e. ri ¼

P
j½ðAÞijðxÞj� � ðqÞi). Convergence for the linear system derived from (66) and (67)

was determined to occur when
max½jrij� 6 eMqV2
ffiffiffiffiffiffiffiffiffi
Amin

p
; ð72Þ
where eM ¼ 10�4; V is a parameter specifying the typical velocity scale of the problem and Amin is the area of the smallest
element of the mesh. Likewise, convergence for the linear system derived from (69) was determined to occur when
max½jrij� 6
ePV

ffiffiffiffiffiffiffiffiffi
Amin
p

Dt
; ð73Þ
where eP ¼ 10�4.
The time step size Dt was selected automatically using
Dt ¼ Cfl � Dmin

V
; ð74Þ
where Cfl ¼ 0:2 is the Courant–Friedrichs–Lewy number and Dmin is the minimum distance between data points in the mesh.
The incompressible Navier–Stokes solver was verified using the lid-driven cavity flow problem, which is a standard bench-

mark. This is illustrated schematically in Fig. 16, which also shows the applied boundary conditions. Fluid parameters of
q ¼ 1000 kg:m�3 and l ¼ 1 kg m�1 s�1 were specified, giving a Reynolds number of 1000. The mesh used (see Fig. 17) con-
tained both regular and irregular regions, so that the interpolation scheme (third order moving least squares) could be put
to the test. The streamlines for the steady state solution are shown in Fig. 18, which also shows the streamlines obtained by
Erturk et al. [4] for the same problem. The flow patterns obtained are extremely similar, the only differences between the
two plots being in the choice of streamline origins. As a more rigourous comparison, the steady state v velocity along the hor-
izontal centreline and steady state u velocity along the vertical centreline are plotted in Fig. 19. These are compared with the
results of simulations by Kim and Choi [11] and Ghia et al. [5] on the same figure, and the results are clearly similar. This dem-
onstrates the accuracy of the solver, which in turn implies that the interpolation scheme used is suitably robust and accurate.

In order to show the importance of singularity avoidance, the above simulation was re-run with SingularityTolerance ¼ 0:05
instead of 0.2. This allows stencils to be built which are nearly singular, causing large numerical errors. In turn, this results in
instabilities in several places on the mesh, which ultimately grow large enough to prevent successful convergence of the iter-
ative algorithm for solving (71). This occurred in only 58 time steps, which demonstrates just how crucial it is to avoid sin-
gularities. The results for this simulation are highly inaccurate, and are omitted for brevity.
. Schematic of the cavity flow problem, including the boundary conditions which were applied in this study. The vortices shown are those which
the steady state solution at Re ¼ 1000. Additional vortices exist at higher Reynolds numbers.



Fig. 17. Mesh used for simulating the cavity flow problem.

Fig. 18. Streamlines for the steady state solution to the cavity flow problem, at Re ¼ 1000. Note that the streamlines for the plots were chosen in order to
highlight the flow topology, and are not intended to correspond to regularly spaced values of the stream function.
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Fig. 19. Velocity sections for the steady state solution to the cavity flow problem, at Re ¼ 1000. The dashed lines are the results obtained from this study,
while the solid lines are the results of Kim and Choi [11]. The large dots are the results of Ghia et al. [5].
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5. Conclusion

In this paper, a moving least squares interpolation scheme was presented, for use with unstructured meshes. The precise
conditions under which singularities occur were identified, and a method by which this theory may be extended to more
general moving least squares schemes was discussed. Moreover, the singularity theory was used to create an algorithm
which may be used to build stencils which are guaranteed to be non-singular (as well as being as close as possible to sym-
metric). Example stencils produced by this algorithm were given. The moving least squares scheme, based on the stencil
building algorithm, was then applied in a convection–diffusion equation solver and incompressible Navier–Stokes solver,
and was found to be robust and accurate.
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